
P a g e | 9

FCPIT VDS Saini

6. Beginning with C++ program

6.1 Input/output using extraction (>>) and insertion (<<) operators and Writing
simple C++ programs

A stream is an entity where a program can either insert or extract characters to/from. There is no
need to know details about the media associated to the stream or any of its internal specifications.
All we need to know is that streams are a source/destination of characters, and that these
characters are provided/accepted sequentially (i.e., one after another).

The standard library defines a handful of stream objects that can be used to access what are
considered the standard sources and destinations of characters by the environment where the
program runs:

stream description

cin standard input stream

cout standard output stream

Standard output (cout)

On most program environments, the standard output by default is the screen, and the C++ stream
object defined to access it is cout.

For formatted output operations, cout is used together with the insertion operator, which is written
as << (i.e., two "less than" signs).

1
2
3

cout << "Output sentence"; // prints Output sentence on screen
cout << 120; // prints number 120 on screen
cout << x; // prints the value of x on screen

The << operator inserts the data that follows it into the stream that precedes it. In the examples
above, it inserted the literal string Output sentence, the number 120, and the value of
variable x into the standard output stream cout. Notice that the sentence in the first statement is
enclosed in double quotes (") because it is a string literal, while in the last one,x is not. The double
quoting is what makes the difference; when the text is enclosed between them, the text is printed
literally; when they are not, the text is interpreted as the identifier of a variable, and its value is
printed instead. For example, these two sentences have very different results:

1
2
cout << "Hello"; // prints Hello
cout << Hello; // prints the content of variable Hello

Multiple insertion operations (<<) may be chained in a single statement:

 cout << "This " << " is a " << "single C++ statement";

P a g e | 10

FCPIT VDS Saini

This last statement would print the text This is a single C++ statement. Chaining insertions
is especially useful to mix literals and variables in a single statement:

 cout << "I am " << age << " years old and my zipcode is " << zipcode;

Assuming the age variable contains the value 24 and the zipcode variable contains 90064, the output
of the previous statement would be:

I am 24 years old and my zipcode is 90064
What cout does not do automatically is add line breaks at the end, unless instructed to do so. For
example, take the following two statements inserting into cout:
cout << "This is a sentence.";
cout << "This is another sentence.";

The output would be in a single line, without any line breaks in between. Something like:

This is a sentence.This is another sentence.
To insert a line break, a new-line character shall be inserted at the exact position the line should be
broken. In C++, a new-line character can be specified as \n (i.e., a backslash character followed by a
lowercase n). For example:

1
2
cout << "First sentence.\n";
cout << "Second sentence.\nThird sentence.";

This produces the following output:

First sentence.
Second sentence.
Third sentence.

Alternatively, the endl manipulator can also be used to break lines. For example:
1
2
cout << "First sentence." << endl;
cout << "Second sentence." << endl;

This would print:
First sentence.
Second sentence.

The endl manipulator produces a newline character, exactly as the insertion of '\n' does; but it
also has an additional behavior: the stream's buffer (if any) is flushed, which means that the output
is requested to be physically written to the device, if it wasn't already. This affects mainly fully
buffered streams, and cout is (generally) not a fully buffered stream. Still, it is generally a good idea
to use endl only when flushing the stream would be a feature and '\n' when it would not. Bear in
mind that a flushing operation incurs a certain overhead, and on some devices it may produce a
delay.

P a g e | 11

FCPIT VDS Saini

Standard input (cin)

In most program environments, the standard input by default is the keyboard, and the C++ stream
object defined to access it is cin. For formatted input operations, cin is used together with the
extraction operator, which is written as >> (i.e., two "greater than" signs). This operator is then
followed by the variable where the extracted data is stored. For example:

1
2
int age;
cin >> age;

The first statement declares a variable of type int called age, and the second extracts from cin a
value to be stored in it. This operation makes the program wait for input from cin; generally, this
means that the program will wait for the user to enter some sequence with the keyboard. In this
case, note that the characters introduced using the keyboard are only transmitted to the program
when the ENTER (or RETURN) key is pressed.

The extraction operation on cin uses the type of the variable after the >> operator to determine
how it interprets the characters read from the input; if it is an integer, the format expected is a
series of digits, if a string a sequence of characters, etc.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// i/o example

#include <iostream.h>
#include <conio.h>

void main ()
{
 int i;
 cout << "Please enter an integer
value: ";
 cin >> i;
 cout << "The value you entered is
" << i;
 cout << " and its double is " <<
i*2 << ".\n";
 getch();
}

Please enter an integer value: 702
The value you entered is 702 and its
double is 1404.

As you can see, extracting from cin seems to make the task of getting input from the standard input
pretty simple and straightforward. But this method also has a big drawback. What happens in the
example above if the user enters something else that cannot be interpreted as an integer? Well, in
this case, the extraction operation fails.

This is very poor program behavior. Most programs are expected to behave in an expected manner
no matter what the user types, handling invalid values appropriately.

 cin >> a >> b;

This is equivalent to:

1
2
cin >> a;
cin >> b;

P a g e | 12

FCPIT VDS Saini

6.2 Comments in C++

Program comments are explanatory statements that you can include in the C++ code that you write
and helps anyone reading it's source code. All programming languages allow for some form of
comments.

C++ supports single-line and multi-line comments. All characters available inside any comment are
ignored by C++ compiler.

C++ comments start with /* and end with */. For example:

/* This is a comment */

/* C++ comments can also
 * span multiple lines
 */

A comment can also start with //, extending to the end of the line. For example:

#include <iostream.h>
#include <conio.h>

void main()
{
 cout << "Hello World"; // prints Hello World

 getch();
}

When the above code is compiled, it will ignore // prints Hello World and final executable will
produce the following result:

Hello World

Within a /* and */ comment, // characters have no special meaning. Within a // comment, /* and
*/ have no special meaning. Thus, you can "nest" one kind of comment within the other kind. For
example:

/* Comment out printing of Hello World:

cout << "Hello World"; // prints Hello World

*/

FCPIT

6.3 Stages of program execution

Compiling a source code file in C++ is a four
code file named prog1.cpp the compilation process looks like this:

1. The C++ preprocessor copies the contents of the included header files into the source code
file, generates macro code, and replaces symbolic
values.

2. The expanded source code file produced by the C++ preprocessor is compiled into the
assembly language for the platform.

3. The assembler code generated by the compiler is assembled into the object code for th
platform.

4. The object code file generated by the assembler is linked together with the object code files
for any library functions used to produce an executable file.

tages of program execution

Compiling a source code file in C++ is a four-step process. For example, if you have a C++ source
the compilation process looks like this:

The C++ preprocessor copies the contents of the included header files into the source code
file, generates macro code, and replaces symbolic constants defined using

The expanded source code file produced by the C++ preprocessor is compiled into the
assembly language for the platform.
The assembler code generated by the compiler is assembled into the object code for th

The object code file generated by the assembler is linked together with the object code files
for any library functions used to produce an executable file.

P a g e | 13

 VDS Saini

process. For example, if you have a C++ source

The C++ preprocessor copies the contents of the included header files into the source code
constants defined using #define with their

The expanded source code file produced by the C++ preprocessor is compiled into the

The assembler code generated by the compiler is assembled into the object code for the

The object code file generated by the assembler is linked together with the object code files

